تبلیغات
علم ۳۰۰۰ - قضیه فرما

 لینكدونی ..

جهان ریاضی{شهریور۸۷}...-
یه سایت انگلیسی که مطالب زیادی درباره ریاضیات مثل توپولوژی جبر و... داره .

چت راحت {مرداد۸۶}...-
یه سایت که به راحتی و بدون نیاز به مسنجر می تونین توی اون چت کنین .

آموزش انگلیسی...-
این سایت تمام اصطلاحات موجود در تعدادی فیلم معروف را درآورده است .

لینک ریاضیات...-
یه سایت عالی امریکایی در تمام زمینه های ریاضی

sciencedirect...-
یه سایت علمی که می تونید مقاله های زیاد علمی مورد نظرتون رو توی اون بیابید .

لیگ نجومی...-
یه سایت خوب درباره نجوم

اطلاعات علمی و فنی...-
سایتی جالب و امریکایی .

انجمن ریاضی ایران...-

ناسا...-
سازمان فضانوردی آمریکا

ARCHIVE
 

 

 جستجو در بلاگ..

 

 عضویت در خبرنامه وبلاگ ..

 

Free counter and web stats

 آمار وبلاگ..

امروز .... 

دیروز ....

در كل ...



دوشنبه 31 تیر 1387:قضیه فرما

 

فرما و آخرین قضیه ی او

پس از درگذشت فرما، فرزندش ساموئل کار انتشار آثار او را به عهده گرفت. ساموئل، ضمن جمع آوری نوشته های پدرش، کتابها و مقالات مورد مطالعه وی را نیز بررسی نمود و همین امر باعث انتشار قضیه معروف فرما شد. او دریافت که پدرش، 48 نظر تحت عنوان «نظریات روی کتاب دیوفانتس» نوشته است. در هشتمین مساله، آنچه که بعدها به آخرین قضیه فرما مشهور گردید، بیان شده بود. این مساله به زبان نمادین به این صورت است:


برای هر عدد صحیح n>2 معادله ی an + bn = cn فاقد جواب صحیح مثبت است.
فرما ادعا کرده بود که روشی شگفت انگیز برای اثبات این مطلب یافته است، اما حاشیه کتاب باریکتر از آن است که آن را در خود جای دهد!
هر حدس یا قضیه ی دیگری که فرما به این روش اعلام کرده بود تا سال 1847 اثبات شد، مگر آخرین آنها که همین قضیه باشد.اکنون که بیش از سه قرن از درگذشت فرما می گذرد، کارهای او در غیر از نظریه اعداد، اهمیت خود را در ذهن افراد از دست داده است. البته دلیل این مطلب آن است که کارهای وی قدمهای اولیه ی اساسی در توسه ی نظریات مهمی بوده که امروزه کاملا فهمیده شده اند و به راحتی با زبان نمادین ریاضی –که در زمان فرما موجود نبوده- قابل بیانند. علاقه عمیق فرما به نظریه اعداد از گفته ی وی که مطالعه خواص اعداد صحیح مثبت، بزرگترین عرصه قدرت نمایی استدلال ریاضی محض و بزرگترین گنجینه حقایق ریاضی محض است پیداست.

2.قضیه فرما، پیش از قرن بیستم – میدانهای اقلیدسی اعداد
در 4 آگوست 1753 اویلر در نامه ای به گلدباخ، ادعا کرد که قضیه فرما را در حالت N=3 ثابت کرده است. البته اثلات وی اشتباه جالبی داشت. او به دنبال یافتن مکعب هایی از فرم بود...
فرد دیگری که قدمی به جلو برداشت، سوفی ژرمن بود. او نشان داد که اگر n و 2n+1 اعداد اولی باشند، آنگاه ایجاب می کند که یکی از x،y یا z بر n بخشپذیر باشد. بنابراین قضیه آخر فرما به دو حالت زیر تفکیک می شود:
(1) n هیچیک از x و y و z را نمی شمارد.
(2) n یکی از x و y و z را می شمارد.
سوفی ژرمن حالت (1) را برای هر n<100 ثابت کرد و لژاندر روش وی را به همه ی اعداد کوچکتر از 197 گسترش داد. حالت (2) برای n=5 به دو بخش تقسیم شد و بخشی را دیریکله در جولای 1825 و حالت دیگر را لژاندر در سپتامبر 1825 ثابت کرد.
در سال 1832 دیریکله اثباتی از قضیه فرما را برای n=14 منتشر کرد. حالت n=7 در 1839 توشط لامه ثابت شد.سال 1847 در مطالعه قضیه فرما اهمیت زیادی داشت. در اول ماه مارس 1847 لامه ادعا کرد که قضیه آخر فرما را ثابت کرده است. این ادعای لامه عملا منجر به پیشرفتهایی در مبحث میدانهای اقلیدسی اعداد شد.

3. قضیه فرما در قرن بیستم
با وجود جوایزی که برای حل مساله فرما گذاشته شده بود، این قضیه، همچنان حل نشده باقی ماند و رکورددار بیشترین اثباتهای غلط شد. مثلا بیش از 1000 اثبات غلط در بین سالهای 1908 تا 1912 منتشر گردید.
کومر با معرفی مفاهیم عمده ای در نظریه اعداد مانند اعداد سیکلوتومیک، یکتایی تجزیه و عدد رده ای توانست قضیه فرما را برای n های اول کمتر از 100 بجر 37 و 56 و 67 – که به اصطلاح اعداد نامنظم (irregular) بین یک و صد نامیده می شوند – ثایت کند. در سال 1857 کومر قضیه فرما را برای این اعداد نیز ثابت کرد. البته اثبات او نقص هایی داشت که در سال 1920 ون دیور آنها را برطرف نمود.
نتیجه های فوق برای n های خاص بوده است. در این باره تا سال 1992 درستی آخرین قضیه فرما برای همه ی اعداد اول n<4000000 به کمک کامپیوتر بدست آمد. اولین کار عمده برای n دلخواه، در قرن بیستم، در اوایل دهه 1980 توسط فالتینگز انجام شد. وی حدس موردل را که در سال 1922 مطرح شده بود ثابت کرد. این حدس به قرار زیر است:
«تعداد نقاط گویا روی یک منحنی با ضرایب گویا و گونای بزرگتر یا مساوی دو، متناهی است.
علت ارتباط این مساله با قضیه ی فرما این است که هر جواب صحیح و غیر صفر مانند x و y و z برای معادله ی متناظر است با یک نقطه با مختصات گویا روی منحنی و برعکس.اما این ارتباط در نهایت حاصلی برای اثبات قضیه آخر فرما نداشت. البته اثبات حدس موردل توسط فالتینگز با معرفی ایده های جدیدی همراه بود که باعث توسه ی مفاهیم اساسی در هندسه جبری حسابی گردید.

4. فصل آخر داستان
فصل پایانی داستان قضیه آخر فرما در سال 1955 آغاز گردید. یوتاکا تانیاما آغازگر این حرکت اساسی بود. وی در سال 1927 در منطقه ای در شمال توکیو متولد شد و در سال 1953 از دانشگاه توکیو در «نظریه جبری اعداد» فارغ التحصیل گردید. او کتاب «نظریه اعداد مدرن» را همراه شیمورا در سال 1957 نوشت. با اینکه آینده ی بزرگی، به ویژه از نظر علمی برای تانیاما متصور می شد، او در روز 17 نوامبر 1958 در توکیو خودکشی کرد. تانیاما به عنوان دلیل خودکشی خود نوشته است:
«تا دیروز دلیلی قطعی برای کشتن خود نداشتم... خودم هم نمی فهمم، اما این نتیجه ی اتفاق یا موضوع خاصی نیست.»حدود یک ماه بعد دختری که تانیاما قصد ازدواج با او را داشت نیز خودکشی کرد!
تانیاما سوالاتی درباره ی خمهای بیضوی – یعنی خم هایی بفرم پرسید. کارهای بیشتر که در این زمینه توسط ویل و شیمورا انجام شد، حدسی را بوجود آورد که به حدس شیمورا-تانیاما-ویل مشهور گردید. این حدس حاکی است که هر خم بیضوی را که بر اعداد گویا تعریف می شود، می توان به وسیله ی توابع پیمانه ای بیضوی، پارامتری کرد.در سال 1986، ارتباطی بین حدس شیمورا-تانیاما-ویل و قضیه ی آخر فرما توسط فری و سر ایجاد شد. در همهن دهه دهه کن ریبت، بر اساس کارهای انجام شده توسط سر، نشان داد که قضیه آخر فرما از حدس شیمورا-تاناما-ویل نتیجه می شود.

اندرو وایلز و اثبات قضیه آخر فرما
اندر جان وایلز (Andrew John Wiles) در 11 آوریل 1953 در کمبریج انگلستان به دنیا آمد. علاقه ی او به قضیه ی فرما زمانی که او کودکی ده ساله بود شکب گرفت. او در این باره می گوید:
«من ده ساله بودم که روزی در کتابخانه ای عمومی یک کتاب ریاضی پیدا کردم. در این کتاب مطالب تاریخی بسیاری درباره ی مساله ای آمده بود. من در حالی که فقط ده سالم بود، صورت آن مساله را فهمیدم و سعی کردم آن را ثابت کنم. مساله ی جالبی بود. این مساله همان قضیه ی آخر فرما بود!»
وایلز درجه دکترای خود را از دانشگاه کمبریج دریافت نمود. استاد راهنمای وی در کمبریج جان کوتز بود. وی درباره ی وایلز گفته است:
«من از داشتن دانشجویی مثل اندرو خیلی خوشحال بوده ام. او ایده های عمیقی در تحقیقات داشت و همیشه واضح بود که ریاضیدانی خواهد شد که کارهای بزرگی انجام می دهد!»
اندرو وایلز در دهه 1980 به دانشگاه پرینستون رفت. وی پس از شروع کار روی قضیه فرما تقریبا تحقیقات دیگرش را کنار گذاشت. خود وایلز در این باره گفته است که بعد از مدتی متوجه شده که صحبت کردن با دیگران درباره ی قضیه فرما غیر ممکن است. زیرا این مطلب به موضوع شدیدا جالب توجهی برای همه تبدیل شده!
تنها کسی که از کار کردن وایلز روی قضیه آخر فرما اطلاع داشت، همسرش بود. وایلز در این باره گفته است:
«فقط همسرم می دانست که من روی قضیه فرما کار می کنم. من بعد از گذشت چند روز از ازدواجمان به او گفته بودم که قصد دارم روی این قضیه کار کنم...»

 

 

مصطفی م +ریاضی , +

ویرایش در [یکشنبه 30 تیر 1387] || [10:07 ق.ظ]

[11:07 ق.ظ] || [+]

پیغام ها

 

 

 


 مباحث ..

عمومی...5

زیست شناسی...1

ریاضی...6

فیزیک...15

کامپیوتر...5

عکس...8

نجوم...10

نانوتکنولوژی...3


 

 نویسندگان..

مصطفی م...53


 

 آرشیو ..

مرداد 1388...1

بهمن 1387...1

آبان 1387...1

مهر 1387...2

شهریور 1387...5

مرداد 1387...4

تیر 1387...4

آذر 1386...1

شهریور 1386...1

مرداد 1386...1

تیر 1386...3

خرداد 1386...1

آذر 1385...2

آبان 1385...1

بهمن 1384...4

آبان 1384...1

شهریور 1384...3

مرداد 1384...7

تیر 1384...6

فروردین 1384...5


 

 صفحات ..

 

 نوشته های پیشین..

مدیریت ساخت..-
استاتیک..-
داستان اعداد و تاریخچه شان..-
تابش الکترومغناطیس و جسم سیاه ..-
ستارگان-از تولد تا مرگ (کوتوله ها و غول هاو ...)..-
جک هیدرولیک-توضیحات وفرمولها..-
نظریه ماشینها..-
علم ۳۰۰۰..-
نظریه فازی انقلابی در علم و صنعت ـ توسط دکتر زاده..-
بیگ بنگ - انفجار بزرگ..-
حدس گلدباخ..-
نخستین ستارگان جهان..-
تعریف خلاقیت!..-
قضیه فرما..-
نستالژی!..-

Email
[yahoo]

.(C) Copyright

All Right Reserved

Alireza Asgari !!